竞聘演讲稿-个人述职报告-读后感-实习心得体会-疫情防控工作总结 - 涵芬社

人教版高三数学知识点归纳_知识点大全

岁月如歌

【#高三# 导语】与高一高二不同之处在于,此时复习力学部分知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。©高三频道为你精心准备了《人教版高三数学知识点归纳》助你金榜题名!

1.人教版高三数学知识点归纳


  符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。

  轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。

  【轨迹方程】就是与几何轨迹对应的代数描述。

  一、求动点的轨迹方程的基本步骤

  1、建立适当的坐标系,设出动点M的坐标;

  2、写出点M的集合;

  3、列出方程=0;

  4、化简方程为最简形式;

  5、检验。

  二、求动点的轨迹方程的常用方法:求轨迹方程的'方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

  1、直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

  2、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

  3、相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

  4、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

  5、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

  直译法:求动点轨迹方程的一般步骤

  ①建系——建立适当的坐标系;

  ②设点——设轨迹上的任一点P(x,y);

  ③列式——列出动点p所满足的关系式;

  ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

  ⑤证明——证明所求方程即为符合条件的动点轨迹方程。

2.人教版高三数学知识点归纳


  第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

  主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

  第二:平面向量和三角函数。

  重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

  第三:数列。

  数列这个板块,重点考两个方面:一个通项;一个是求和。

  第四:空间向量和立体几何。

  在里面重点考察两个方面:一个是证明;一个是计算。

  第五:概率和统计。

  这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二……事件,第三是独立事件,还有独立重复事件发生的概率。

  第六:解析几何。

  这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的'题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

  第七:押轴题。

  考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

3.人教版高三数学知识点归纳


  1、圆柱体:

  表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

  2、圆锥体:

  表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

  3、正方体

  a-边长,S=6a2,V=a3

  4、长方体

  a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

  5、棱柱

  S-底面积h-高V=Sh

  6、棱锥

  S-底面积h-高V=Sh/3

  7、棱台

  S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、拟柱体

  S1-上底面积,S2-下底面积,S0-中截面积

  h-高,V=h(S1+S2+4S0)/6

  9、圆柱

  r-底半径,h-高,C—底面周长

  S底—底面积,S侧—侧面积,S表—表面积C=2πr

  S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圆柱

  R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

  11、直圆锥

  r-底半径h-高V=πr^2h/3

  12、圆台

  r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3

  13、球

  r-半径d-直径V=4/3πr^3=πd^3/6

  14、球缺

  h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球台

  r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6

  16、圆环体

  R-环体半径D-环体直径r-环体截面半径d-环体截面直径

  V=2π2Rr2=π2Dd2/4

  17、桶状体

  D-桶腹直径d-桶底直径h-桶高

  V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)

  V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

4.人教版高三数学知识点归纳

  1.函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(-x);

  (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的.单调区间内有相反的单调性;

  2.复合函数的有关问题

  (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定;

  3.函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

  (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

  4.函数的周期性

  (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

  (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

  (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

  5.方程k=f(x)有解k∈D(D为f(x)的值域);

  6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7.(1)(a>0,a≠1,b>0,n∈R+);

  (2)logaN=(a>0,a≠1,b>0,b≠1);

  (3)logab的符号由口诀“同正异负”记忆;

  (4)alogaN=N(a>0,a≠1,N>0);

  8.判断对应是否为映射时,抓住两点:

  (1)A中元素必须都有象且;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  10.对于反函数,应掌握以下一些结论:

  (1)定义域上的单调函数必有反函数;

  (2)奇函数的反函数也是奇函数;

  (3)定义域为非单元素集的偶函数不存在反函数;

  (4)周期函数不存在反函数;

  (5)互为反函数的两个函数具有相同的单调性;

  (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

  11.处理二次函数的问题勿忘数形结合

  二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

  12.依据单调性

  利用一次函数在区间上的保号性可解决求一类参数的范围问题;

  13.恒成立问题的处理方法

  (1)分离参数法;

  (2)转化为一元二次方程的根的分布列不等式(组)求解;

5.人教版高三数学知识点归纳


  一、函数的定义域的常用求法:

  1、分式的分母不等于零;

  2、偶次方根的被开方数大于等于零;

  3、对数的真数大于零;

  4、指数函数和对数函数的底数大于零且不等于1;

  5、三角函数正切函数y=tanx中x≠kπ+π/2;

  6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

  二、函数的解析式的常用求法:

  1、定义法;

  2、换元法;

  3、待定系数法;

  4、函数方程法;

  5、参数法;

  6、配方法

  三、函数的值域的常用求法:

  1、换元法;

  2、配方法;

  3、判别式法;

  4、几何法;

  5、不等式法;

  6、单调性法;

  7、直接法

  四、函数的最值的常用求法:

  1、配方法;

  2、换元法;

  3、不等式法;

  4、几何法;

  5、单调性法

  五、函数单调性的常用结论:

  1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。

  2、若f(x)为增(减)函数,则—f(x)为减(增)函数。

  3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数。

  4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

  5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

  六、函数奇偶性的常用结论:

  1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。

  2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

  3、一个奇函数与一个偶函数的积(商)为奇函数。

  4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

  5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(—x)]+1/2[f(x)+f(—x)],该式的特点是:右端为一个奇函数和一个偶函数的和。

标签:  高三  人教版高三数学知识点归纳

请支持知识付费阅读!感谢!

推荐度:

留言评论

留言与评论(共有 0 条评论)
   
验证码: