竞聘演讲稿_个人述职报告_读后感_实习心得体会_疫情防控工作总结-涵芬社

初一上册数学期末必考知识点

咸鱼翻身

#初一# 导语】学得越多,懂得越多,想得越多,领悟得就越多,就像滴水一样,一滴水或许很快就会被太阳蒸发,但如果滴水不停的滴,就会变成一个水沟,越来越多,越来越多……本篇文章是为您整理的《初一上册数学期末必考知识点》,供大家借鉴。



  

1.初一上册数学期末必考知识点

  角

  1.角的定义:有公共端点的两条射线组成的图形叫角。这个公共端点是角的顶点,两条射线为角的两边。

  2.角有以下的表示方法:

  (1)用三个大写字母及符号“∠”表示.三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间。

  (2)用一个大写字母表示.这个字母就是顶点.当有两个或两个以上的角是同一个顶点时,不能用一个大写字母表示。

  (3)用一个数字或一个希腊字母表示.在角的内部靠近角的顶点处画一弧线,写上希腊字母或数字.如图的两个角,分别记作∠α、∠1。

  3.以度、分、秒为单位的角的度量制,叫做角度制。角的度、分、秒是60进制的。1度=60分,1分=60秒,1周角=360度,1平角=180度。

  4.角的平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线。

  5.如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角;如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。

  6.同角(等角)的补角相等;同角(等角)的余角相等。

  

2.初一上册数学期末必考知识点

  图形初步认识

  1.我们把实物中抽象的各种图形统称为几何图形。

  2.有些几何图形(如长方体.正方体.圆柱.圆锥.球等)的各部分不都在同一平面内,它们是立体图形。

  3.有些几何图形(如线段.角.三角形.长方形.圆等)的各部分都在同一平面内,它们是平面图形。

  4.将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

  5.几何体简称为体。

  6.包围着体的是面,面有平的面和曲的面两种。

  7.面与面相交的地方形成线,线和线相交的地方是点。

  8.点动成面,面动成线,线动成体。

  9.经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。简述为:两点确定一条直线(公理)。

  10.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

  11.点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。

  12.经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)

  13.连接两点间的线段的长度,叫做这两点的距离。

  整式的加减

  1.都是数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。

  2.单项式中的数字因数叫做这个单项式的系数。

  3.一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  4.几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

  5.多项式里次数项的次数,叫做这个多项式的次数。

  6.把多项式中的同类项合并成一项,叫做合并同类项。

  合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

  7.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

  8.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  9.一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

  

3.初一上册数学期末必考知识点

  多项式除以单项式

  一、单项式

  1、都是数字与字母的乘积的代数式叫做单项式。

  2、单项式的数字因数叫做单项式的系数。

  3、单项式中所有字母的指数和叫做单项式的次数。

  4、单独一个数或一个字母也是单项式。

  5、只含有字母因式的单项式的系数是1或―1。

  6、单独的一个数字是单项式,它的系数是它本身。

  7、单独的一个非零常数的次数是0。

  8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

  9、单项式的系数包括它前面的符号。

  10、单项式的系数是带分数时,应化成假分数。

  11、单项式的系数是1或―1时,通常省略数字“1”。

  12、单项式的次数仅与字母有关,与单项式的系数无关。

  二、多项式

  1、几个单项式的和叫做多项式。

  2、多项式中的每一个单项式叫做多项式的项。

  3、多项式中不含字母的项叫做常数项。

  4、一个多项式有几项,就叫做几项式。

  5、多项式的每一项都包括项前面的符号。

  6、多项式没有系数的概念,但有次数的概念。

  7、多项式中次数的项的次数,叫做这个多项式的次数。

  三、整式

  1、单项式和多项式统称为整式。

  2、单项式或多项式都是整式。

  3、整式不一定是单项式。

  4、整式不一定是多项式。

  5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

  四、整式的加减

  1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

  2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

  3、几个整式相加减的一般步骤:

  (1)列出代数式:用括号把每个整式括起来,再用加减号连接。

  (2)按去括号法则去括号。

  (3)合并同类项。

  4、代数式求值的一般步骤:

  (1)代数式化简。

  (2)代入计算

  (3)对于某些特殊的代数式,可采用“整体代入”进行计算。

  五、同底数幂的乘法

  1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

  2、底数相同的幂叫做同底数幂。

  3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

  4、此法则也可以逆用,即:am+n=am﹒an。

  5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

  六、幂的乘方

  1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。

  2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n=amn。

  3、此法则也可以逆用,即:amn=(am)n=(an)m。

  七、积的乘方

  1、积的乘方是指底数是乘积形式的乘方。

  2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。

  3、此法则也可以逆用,即:anbn=(ab)n。

  八、三种“幂的运算法则”异同点

  1、共同点:

  (1)法则中的底数不变,只对指数做运算。

  (2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。

  (3)对于含有3个或3个以上的运算,法则仍然成立。

  2、不同点:

  (1)同底数幂相乘是指数相加。

  (2)幂的乘方是指数相乘。

  (3)积的乘方是每个因式分别乘方,再将结果相乘。

  九、同底数幂的除法

  1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。

  2、此法则也可以逆用,即:am-n=am÷an(a≠0)。

  十、零指数幂

  1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

  十一、负指数幂

  1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:

  注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。

  十二、整式的乘法

  (一)单项式与单项式相乘

  1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

  2、系数相乘时,注意符号。

  3、相同字母的幂相乘时,底数不变,指数相加。

  4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

  5、单项式乘以单项式的结果仍是单项式。

  6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

  (二)单项式与多项式相乘

  1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

  2、运算时注意积的符号,多项式的每一项都包括它前面的符号。

  3、积是一个多项式,其项数与多项式的项数相同。

  4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。

  (三)多项式与多项式相乘

  1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。

  2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

  3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。

  4、运算结果中有同类项的要合并同类项。

  5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。

  

4.初一上册数学期末必考知识点

  (一)正负数

  1.正数:大于0的数。

  2.负数:小于0的数。

  3.0即不是正数也不是负数。

  4.正数大于0,负数小于0,正数大于负数。

  (二)有理数

  1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

  2.整数:正整数、0、负整数,统称整数。

  3.分数:正分数、负分数。

  (三)数轴

  1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

  2.数轴的三要素:原点、正方向、单位长度。

  3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

  4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

  (四)有理数的加减法

  1.先定符号,再算绝对值。

  2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

  3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

  4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5.a?b=a+(?b)减去一个数,等于加这个数的相反数。

  (五)有理数乘法(先定积的符号,再定积的大小)

  1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

  2.乘积是1的两个数互为倒数。

  3.乘法交换律:ab=ba

  4.乘法结合律:(ab)c=a(bc)

  5.乘法分配律:a(b+c)=ab+ac

  (六)有理数除法

  1.先将除法化成乘法,然后定符号,最后求结果。

  2.除以一个不等于0的数,等于乘这个数的倒数。

  3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(七)乘方1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。3.同底数幂相乘,底不变,指数相加。

  4.同底数幂相除,底不变,指数相减。

  (八)有理数的加减乘除混合运算法则

  1.先乘方,再乘除,最后加减。

  2.同级运算,从左到右进行。

  3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  (九)科学记数法、近似数、有效数字。

  

5.初一上册数学期末必考知识点

  一、方程的有关概念

  1.方程:含有未知数的等式就叫做方程.

  2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程.

  3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

  注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

  二、等式的性质

  等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.

  等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c

  等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

  三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.

  四、去括号法则

  1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

  2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

  五、解方程的一般步骤

  1.去分母(方程两边同乘各分母的最小公倍数)

  2.去括号(按去括号法则和分配律)

  3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

  4.合并(把方程化成ax=b(a≠0)形式)

  5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).

  六、用方程思想解决实际问题的一般步骤

  1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

  2.设:设未知数(可分直接设法,间接设法)

  3.列:根据题意列方程.

  4.解:解出所列方程.

  5.检:检验所求的解是否符合题意.

  6.答:写出答案(有单位要注明答案)

标签:  初中一年级  初一上册数学期末必考知识点  数学知识点

请支持知识付费阅读!感谢!

推荐度:

留言评论

留言与评论(共有 0 条评论)
   
验证码: