竞聘演讲稿-个人述职报告-读后感-实习心得体会-疫情防控工作总结 - 涵芬社

高三数学上册必修四知识点归纳_知识点大全

还干啥

【#高三# 导语】一轮复习中,考生依据课本对基础知识点和考点,进行了全面的复习扫描,已建构起高考语文基本的学科知识、学科能力和思维方法。二轮复习是承上启下的重要一环,要在一轮复习的基础上,依据考纲,落实重点,突破难点,找准自己的增长点,提高复习备考的实效性。©为你整理了《高三数学上册必修四知识点归纳》希望可以帮助你学习!

15.jpg

1.高三数学上册必修四知识点归纳


  虚数单位一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。

  对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。

  箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。

  代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。

  一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

  利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,

  减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

  三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。

  辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,

  两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。

2.高三数学上册必修四知识点归纳


  《不等式》

  解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

  高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

  证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。

  直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

  还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

  《数列》

  等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。

  数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,

  取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:

  一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:

  首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

3.高三数学上册必修四知识点归纳


  有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

  笛卡尔的观点对,点和有序实数对,两者-一来对应,开创几何新途径。

  两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

  三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

  四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

  解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

4.高三数学上册必修四知识点归纳


  内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

  复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

  指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

  函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

  正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

  两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

  求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

  幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

  奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

5.高三数学上册必修四知识点归纳


  (一)第一数学归纳法

  一般地,证明一个与正整数n有关的命题,有如下步骤

  (1)证明当n取第一个值时命题成立,对于一般数列取值为1,但也有特殊情况,

  (2)假设当n=k(k≥[n的第一个值],k为自然数)时命题成立,证明当n=k+1时命题也成立。

  (二)第二数学归纳法

  对于某个与自然数有关的命题,

  (1)验证n=n0时P(n)成立,

  (2)假设no

  综合(1)(2)对一切自然数n(>n0),命题P(n)都成立,

  (三)螺旋式数学归纳法

  P(n),Q(n)为两个与自然数有关的命题,

  假如(1)P(n0)成立,

  (2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设Q(k)成立,能推出P(k+1)成立,综合(1)(2),对于一切自然数n(>n0),P(n),Q(n)都成立,

  (四)倒推数学归纳法(又名反向数学归纳法)

  (1)对于无穷多个自然数命题P(n)成立,

  (2)假设P(k+1)成立,并在此基础上推出P(k)成立,

  综合(1)(2),对一切自然数n(>n0),命题P(n)都成立,

  总而言之:归纳法是由一系列有限的特殊事例得出一般结论的推理方法。归纳法分为完全归纳法和不完全归纳法完全归纳法:数学归纳法就是一种不完全归纳法,在数学中有着重要的地位!

标签:  高三  高三数学上册必修四知识点归纳

请支持知识付费阅读!感谢!

推荐度:

留言评论

留言与评论(共有 0 条评论)
   
验证码: