竞聘演讲稿-个人述职报告-读后感-实习心得体会-疫情防控工作总结 - 涵芬社

高三数学下册知识点总结_知识点大全

厉害了

【#高三# 导语】与高一高二不同之处在于,此时复习力学部分知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。©高三频道为你精心准备了《高三数学下册知识点总结》助你金榜题名!

1.高三数学下册知识点总结


  不等关系

  一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。

  通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为<,≤,≥,>中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

2.高三数学下册知识点总结


  1、直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

  2、直线的斜率

  ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

  ②过两点的直线的斜率公式:

  注意下面四点:

  (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

  (2)k与P1、P2的顺序无关;

  (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

3.高三数学下册知识点总结


  复数的概念:

  形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。

  复数的表示:

  复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。

  复数的几何意义:

  (1)复平面、实轴、虚轴:

  点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数

  (2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即

  这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。

  这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。

  复数的模:

  复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=

  虚数单位i:

  (1)它的平方等于-1,即i2=-1;

  (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立

  (3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。

  (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

  复数模的性质:

  复数与实数、虚数、纯虚数及0的关系:

  对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。

4.高三数学下册知识点总结


  1、圆柱体:

  表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

  2、圆锥体:

  表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

  3、正方体

  a—边长,S=6a2,V=a3

  4、长方体

  a—长,b—宽,c—高S=2(ab+ac+bc)V=abc

  5、棱柱

  S—底面积h—高V=Sh

  6、棱锥

  S—底面积h—高V=Sh/3

  7、棱台

  S1和S2—上、下底面积h—高V=h[S1+S2+(S1S2)^1/2]/3

  8、拟柱体

  S1—上底面积,S2—下底面积,S0—中截面积

  h—高,V=h(S1+S2+4S0)/6

  9、圆柱

  r—底半径,h—高,C—底面周长

  S底—底面积,S侧—侧面积,S表—表面积C=2πr

  S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圆柱

  R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)

  11、直圆锥

  r—底半径h—高V=πr^2h/3

  12、圆台

  r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/3

  13、球

  r—半径d—直径V=4/3πr^3=πd^3/6

  14、球缺

  h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3

  15、球台

  r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6

  16、圆环体

  R—环体半径D—环体直径r—环体截面半径d—环体截面直径

  V=2π2Rr2=π2Dd2/4

  17、桶状体

  D—桶腹直径d—桶底直径h—桶高

  V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)

  V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

5.高三数学下册知识点总结

  不等式的解集:

  ①能使不等式成立的未知数的值,叫做不等式的解。

  ②一个含有未知数的不等式的所有解,组成这个不等式的解集。

  ③求不等式解集的过程叫做解不等式。

  不等式的判定:

  ①常见的不等号有“>”“<”“≤”“≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

  ②在不等式“a>b”或“a

  ③不等号的开口所对的数较大,不等号的尖头所对的数较小;

  ④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。

标签:  高三  高三数学下册知识点总结

请支持知识付费阅读!感谢!

推荐度:

留言评论

留言与评论(共有 0 条评论)
   
验证码: