竞聘演讲稿-个人述职报告-读后感-实习心得体会-疫情防控工作总结 - 涵芬社

高二数学必修四知识点梳理_知识点大全

万人迷

【#高二# 导语】在学习新知识的同时还要复习以前的旧知识,肯定会累,所以要注意劳逸结合。只有充沛的精力才能迎接新的挑战,才会有事半功倍的学习。高二频道为你整理了《高二数学必修四知识点梳理》希望对你的学习有所帮助!

1.高二数学必修四知识点梳理


  1.定义:

  用符号〉,=,〈号连接的式子叫不等式。

  2.性质:

  ①不等式的两边都加上或减去同一个整式,不等号方向不变。

  ②不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ③不等式的两边都乘以或除以同一个负数,不等号方向相反。

  3.分类:

  ①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

  ②一元一次不等式组:

  a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  4.考点:

  ①解一元一次不等式(组)

  ②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

  ③用数轴表示一元一次不等式(组)的解集

2.高二数学必修四知识点梳理

  一、求动点的轨迹方程的基本步骤

  1.建立适当的坐标系,设出动点M的坐标;

  2.写出点M的集合;

  3.列出方程=0;

  4.化简方程为最简形式;

  5.检验。

  二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

  1.直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

  2.定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

  3.相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

  4.参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

  5.交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

  直译法:求动点轨迹方程的一般步骤

  ①建系——建立适当的坐标系;

  ②设点——设轨迹上的任一点P(x,y);

  ③列式——列出动点p所满足的关系式;

  ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

  ⑤证明——证明所求方程即为符合条件的动点轨迹方程。

3.高二数学必修四知识点梳理


  向量的向量积

  定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

  向量的向量积性质:

  ∣a×b∣是以a和b为边的平行四边形面积。

  a×a=0。

  a‖b〈=〉a×b=0。

  向量的向量积运算律

  a×b=-b×a;

  (λa)×b=λ(a×b)=a×(λb);

  (a+b)×c=a×c+b×c.

  注:向量没有除法,“向量AB/向量CD”是没有意义的。

4.高二数学必修四知识点梳理


  1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

  (1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.

  (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.

  (3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.

  (4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.

  (6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.

  (7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.

  (8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.

  2、求函数的最值与值域的区别和联系

  求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.

  如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.

  3、函数的最值在实际问题中的应用

  函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.

5.高二数学必修四知识点梳理

  1.向量可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。

  2.规定若线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。具有方向和长度的线段叫做有向线段。

  3.向量的模:向量的大小,也就是向量的长度(或称模)。向量a的模记作|a|。

  注:向量的模是非负实数,是可以比较大小的。因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。

  4.单位向量:长度为一个单位(即模为1)的向量,叫做单位向量.与向量a同向,且长度为单位1的向量,叫做a方向上的单位向量,记作a0。

  5.长度为0的向量叫做零向量,记作0。零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。

  向量的计算

  1.加法

  交换律:a+b=b+a;

  结合律:(a+b)+c=a+(b+c)。

  2.减法

  如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0

  加减变换律:a+(-b)=a-b

  3.数量积

  定义:已知两个非零向量a,b。作OA=a,OB=b,则∠AOB称作向量a和向量b的夹角,记作θ并规定0≤θ≤π

  向量的数量积的运算律

  a·b=b·a(交换律)

  (λa)·b=λ(a·b)(关于数乘法的结合律)

  (a+b)·c=a·c+b·c(分配律)

  向量的数量积的性质

  a·a=|a|的平方。

  a⊥b〈=〉a·b=0。

  |a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα|因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)

标签:  高二  高二数学必修四知识点梳理

请支持知识付费阅读!感谢!

推荐度:

留言评论

留言与评论(共有 0 条评论)
   
验证码: