竞聘演讲稿-个人述职报告-读后感-实习心得体会-疫情防控工作总结 - 涵芬社

高二必修三数学重点知识点_知识点大全

专业写手
【#高二# 导语】因为高二开始努力,所以前面的知识肯定有一定的欠缺,这就要求自己要制定一定的计划,更要比别人付出更多的努力,相信付出的汗水不会白白流淌的,收获总是自己的。©高二频道为你整理了《高二必修三数学重点知识点》,助你金榜题名!

15378615269243284.jpg

1.高二必修三数学重点知识点


  分层抽样

  (1)分层抽样(类型抽样):

  先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

  两种方法:

  ①先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

  ②先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

  (2)分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

  分层标准:

  ①以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

  ②以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

  ③以那些有明显分层区分的变量作为分层变量。

2.高二必修三数学重点知识点


  定义:

  形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

  定义域和值域:

  当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。

  性质:

  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

  排除了为0这种可能,即对于x

  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

3.高二必修三数学重点知识点


  两角和公式

  sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa

  cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb

  tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)

  ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

  倍角公式

  tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  sin(a/2)=((1-cosa)/2)sin(a/2)=-((1-cosa)/2)

  cos(a/2)=((1+cosa)/2)cos(a/2)=-((1+cosa)/2)

  tan(a/2)=((1-cosa)/((1+cosa))tan(a/2)=-((1-cosa)/((1+cosa))

  ctg(a/2)=((1+cosa)/((1-cosa))ctg(a/2)=-((1+cosa)/((1-cosa))

  和差化积

  2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)

  2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)

  sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

  tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb

  ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb

  某些数列前n项和

  1+2+3+4+5+6+7+8+9++n=n(n+1)/21+3+5+7+9+11+13+15++(2n-1)=n2

  2+4+6+8+10+12+14++(2n)=n(n+1)12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/3

4.高二必修三数学重点知识点


  概率的基本性质:

  1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;

  2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);

  3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);

  4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:

  (1)事件A发生且事件B不发生;

  (2)事件A不发生且事件B发生;

  (3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;

  事件A发生B不发生;

  事件B发生事件A不发生,对立事件互斥事件的特殊情形。

5.高二必修三数学重点知识点


  1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法

  2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数

  3.更相减损术是一种求两数公约数的方法,其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数

  4.秦九韶算法是一种用于计算一元二次多项式的值的方法

  5.常用的排序方法是直接插入排序和冒泡排序

  6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k

  7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果

  8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数

6.高二必修三数学重点知识点


  一、随机事件

  (1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。

  (2)四种运算律:交换律、结合律、分配律、德莫根律。

  (3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。

  二、概率定义

  (1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;

  (2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;

  (3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;

  (4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。

  三、概率性质与公式

  (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

  (2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);

  (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);

  (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

  贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

  如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.

  (5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。

标签:  高二  高二必修三数学重点知识点

请支持知识付费阅读!感谢!

推荐度:

留言评论

留言与评论(共有 0 条评论)
   
验证码: