竞聘演讲稿-个人述职报告-读后感-实习心得体会-疫情防控工作总结 - 涵芬社

高一数学必修一知识点复习_知识点大全

资料搜集者

【#高一# 导语】高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。为各位同学整理了《高一数学必修一知识点复习》,希望对您的学习有所帮助!

1.高一数学必修一知识点复习


  1.函数的零点

  (1)定义:

  对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.

  (2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:

  方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点,函数y=f(x)有零点.

  (3)函数零点的判定(零点存在性定理):

  如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.

  2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系

  3.二分法

  对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.

  4.函数的零点不是点:

  函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标.

  5.对函数零点存在的判断中,必须强调:

  (1)f(x)在[a,b]上连续;

  (2)f(a)·f(b)<0;

  (3)在(a,b)内存在零点.

  这是零点存在的一个充分条件,但不必要.

  6.对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号.

2.高一数学必修一知识点复习


  【两角和公式】

  sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  【倍角公式】

  tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  【半角公式】

  sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

  【降幂公式】

  (sin^2)x=1-cos2x/2

  (cos^2)x=i=cos2x/2

  【万能公式】

  令tan(a/2)=t

  sina=2t/(1+t^2)

  cosa=(1-t^2)/(1+t^2)

  tana=2t/(1-t^2)

3.高一数学必修一知识点复习


  空间几何体表面积体积公式:

  1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

  2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

  3、a-边长,S=6a2,V=a3

  4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

  5、棱柱S-h-高V=Sh

  6、棱锥S-h-高V=Sh/3

  7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6

  9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

  11、r-底半径h-高V=πr^2h/3

  12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3

  13、球r-半径d-直径V=4/3πr^3=πd^3/6

  14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6

  16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4

  17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

4.高一数学必修一知识点复习


  函数的解析表达式,及函数定义域的求法

  1、函数解析式子的求法

  (1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

  (2)、求函数的解析式的主要方法有:

  1)代入法:

  2)待定系数法:

  3)换元法:

  4)拼凑法:

  2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

  求函数的定义域时列不等式组的主要依据是:

  (1)分式的分母不等于零;

  (2)偶次方根的被开方数不小于零;

  (3)对数式的真数必须大于零;

  (4)指数、对数式的底必须大于零且不等于1.

  (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

  (6)指数为零底不可以等于零,

  (7)实际问题中的函数的定义域还要保证实际问题有意义.

  3、相同函数的判断方法:

  ①表达式相同(与表示自变量和函数值的字母无关);

  ②定义域一致(两点必须同时具备)

  4、区间的概念:

  (1)区间的分类:开区间、闭区间、半开半闭区间

  (2)无穷区间

  (3)区间的数轴表示

5.高一数学必修一知识点复习


  函数图象

  (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

  (2)画法

  A、描点法

  B、图象变换法

  (3)函数图像变换的特点:

  1)函数y=f(x)关于X轴对称y=-f(x)

  2)函数y=f(x)关于Y轴对称y=f(-x)

  3)函数y=f(x)关于原点对称y=-f(-x)

标签:  高一  高一数学必修一知识点复习

请支持知识付费阅读!感谢!

推荐度:

留言评论

留言与评论(共有 0 条评论)
   
验证码: