竞聘演讲稿-个人述职报告-读后感-实习心得体会-疫情防控工作总结 - 涵芬社

高二上学期数学复习知识点_知识点大全

爱学习

【#高二# 导语】直到高二,学生的学习自觉性增强,获取知识一方面从教师那里接受,但这种接受也应该有别于以前的被动接受,它是在经过自己思考、理解的基础上接受。另一方面通过自学主动获取知识。能否顺利实现转变,是成绩能否突破的关键。下面是©为大家带来的《高二上学期数学复习知识点》,希望对你有所帮助!

4 (5).jpg

1.高二上学期数学复习知识点


  1.定义:

  用符号〉,=,〈号连接的式子叫不等式。

  2.性质:

  ①不等式的两边都加上或减去同一个整式,不等号方向不变。

  ②不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ③不等式的两边都乘以或除以同一个负数,不等号方向相反。

  3.分类:

  ①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

  ②一元一次不等式组:

  a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  4.考点:

  ①解一元一次不等式(组)

  ②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

  ③用数轴表示一元一次不等式(组)的解集

2.高二上学期数学复习知识点


  1.任意角

  (1)角的分类:

  ①按旋转方向不同分为正角、负角、零角。

  ②按终边位置不同分为象限角和轴线角。

  (2)终边相同的角:

  终边与角相同的角可写成+k360(kZ)。

  (3)弧度制:

  ①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角。

  ②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=,l是以角作为圆心角时所对圆弧的长,r为半径。

  ③用弧度做单位来度量角的制度叫做弧度制。比值与所取的r的大小无关,仅与角的大小有关。

  ④弧度与角度的换算:360弧度;180弧度。

  ⑤弧长公式:l=||r,扇形面积公式:S扇形=lr=||r2.

  2.任意角的三角函数

  (1)任意角的三角函数定义:

  设是一个任意角,角的终边与单位圆交于点P(x,y),那么角的正弦、余弦、正切分别是:sin=y,cos=x,tan=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数。

  (2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦。

  3.三角函数线

  设角的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M。由三角函数的定义知,点P的坐标为(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与的终边或其反向延长线相交于点T,则tan=AT。我们把有向线段OM、MP、AT叫做的余弦线、正弦线、正切线。

3.高二上学期数学复习知识点


  空间中的平行问题

  (1)直线与平面平行的判定及其性质

  线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

  线线平行线面平行

  线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线线平行

  (2)平面与平面平行的判定及其性质

  两个平面平行的判定定理

  (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

  (线面平行→面面平行),

  (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

  (线线平行→面面平行),

  (3)垂直于同一条直线的两个平面平行,

  两个平面平行的性质定理

  (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)

  (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

4.高二上学期数学复习知识点


  (1)总体和样本:

  ①在统计学中,把研究对象的全体叫做总体

  ②把每个研究对象叫做个体

  ③把总体中个体的总数叫做总体容量

  ④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,我们称它为样本.其中个体的个数称为样本容量

  (2)简单随机抽样,也叫纯随机抽样

  就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

  (3)简单随机抽样常用的方法:

  ①抽签法

  ②随机数表法

  ③计算机模拟法

  在简单随机抽样的样本容量设计中,主要考虑:

  ①总体变异情况;

  ②允许误差范围;

  ③概率保证程度。

  (4)抽签法:

  ①给调查对象群体中的每一个对象编号;

  ②准备抽签的工具,实施抽签;

  ③对样本中的每一个个体进行测量或调查

5.高二上学期数学复习知识点


  1、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

  2、几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);试验的全部结果所构成的区域长度(面积或体积)

  3、几何概型的特点:

  1)试验中所有可能出现的结果(基本事件)有无限多个;

  2)每个基本事件出现的可能性相等、

  4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。

6.高二上学期数学复习知识点


  一、变量间的相关关系

  1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.

  2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.

  二、两个变量的线性相关

  从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.

  当r>0时,表明两个变量正相关;

  当r<0时,表明两个变量负相关.

  r的绝对值越接近于1,表明两个变量的线性相关性越强。r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.

  三、解题方法

  1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.

  2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.

  3.由相关系数r判断时|r|越趋近于1相关性越强.

标签:  高二  高二上学期数学复习知识点

请支持知识付费阅读!感谢!

推荐度:

留言评论

留言与评论(共有 0 条评论)
   
验证码: