竞聘演讲稿-个人述职报告-读后感-实习心得体会-疫情防控工作总结 - 涵芬社

九年级上册数学知识点归纳总结北师大版_知识点大全

福报

#初三# 导语】学习时集中精力,养成良好学习习惯,是节省学习时间和提高学习效率的最为基本的方法。©搜集的《九年级上册数学知识点归纳总结北师大版》,希望对同学们有帮助。


1.九年级上册数学知识点归纳总结北师大版 篇一


  一、等腰三角形

  定义:有两边相等的三角形是等腰三角形。

  性质:

  1.等腰三角形的两个底角相等(简写成“等边对等角”)

  2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)

  3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等)

  4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。

  5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半

  6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)

  7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴

  判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

  特殊的等腰三角形

  等边三角形

  1.定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。

  (注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。

  2.性质:⑴等边三角形的内角都相等,且均为60度。

  ⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。

  ⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。

  3、判定:⑴三边相等的三角形是等边三角形。

  ⑵三个内角都相等的三角形是等边三角形。

  ⑶有一个角是60度的等腰三角形是等边三角形。

  ⑷有两个角等于60度的三角形是等边三角形。

  二、直角三角形全等

  1.直角三角形全等的判定有5种:

  (1)两角及其夹边对应相等的两个三角形全等;(asa)

  (2)两边及其夹角对应相等的两个三角形全等;(sas)

  (3)三边对应相等的两个三角形全等;(sss)

  (4)两角及其中一角的对边对应相等的两个三角形全等;(aas)

  (5)斜边及一条直角边对应相等的两个三角形全等;(hl)

  2.在直角三角形中,如有一个内角等于30,那么它所对的直角边等于斜边的一半

  3.在直角三角形中,斜边上的中线等于斜边的一半

  4.垂直平分线:垂直于一条线段并且平分这条线段的直线。

  性质:线段垂直平分线上的点到这一条线段两个端点距离相等。

  判定:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。

  5.三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等,交点为三角形的外心。

  6.角平分线上的点到角两边的距离相等。

  7.在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。

  8.角平分线是到角的两边距离相等的所有点的集合。

  9.三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。

  10.三角形三条中线交于一点,交点为三角形的重心。

  11.三角形三条高线交于一点,交点为三角形的垂心。

  三、平行四边的定义

  1.定义:两线对边分别平行的四边形叫做平行四边形,

  2.性质:(1)平行四边形的对边相等;(2)对角相等;(3)对角线互相平分。

  3.判定:(1)一组对边平行且相等的四边形是平行四边形。

  (2)两条对角线互相平分的四边形是平行四边形。

  (3)两组对边分别相等的四边形是平行四边形。

  (4)两组对角分别相等的四边形是平行四边形。

  (5)一组对边平行,一组对角相等的四边形是平行四边形。

  (6)一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形。

  两个假命题:(1)一组对边平行,另一组对边相等的四边形是平行四边形。

  (2)一组对边相等,一组对角相等的四边形是平行四边形。

  四、矩形

  1.定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。

  2.性质:(1)具有平行四边形的性质;(2)对角线相等;(3)四个角都是直角。

  (4)矩形是轴对称图形,有两条对称轴。

  3、判定:(1)有三个角是直角的四边形是矩形。

  (2)对角线相等的平行四边形是矩形。

  五、菱形

  1.定义:一组邻边相等的平行四边形叫做菱形。

  2.性质:(1)具有平行四边形的性质;(2)四条边都相等;(3)两条对角线互相垂直,每一条对角线平分一组对角。(4)菱形是轴对称图形,每条对角线所在的直线都是对称轴。

  3.判定:(1)四条边都相等的四边形是菱形。

  (2)对角线互相垂直的平行四边形是菱形。

  (3)一条对角线平分一组对角的平行四边形是菱形。

  六、正方形

  1.定义:一组邻边相等且有一个角是直角的平行四边形叫做正方形。

  2.性质:正方形具有平行四边形、矩形、菱形的一切性质。

  3.判定:(1)有一个内角是直角的菱形是正方形;

  (2)有一组邻边相等的矩形是正方形;

  (3)对角线相等的菱形是正方形;

  (4)对角线互相垂直的矩形是正方形。

  七、梯形定义:

  一组对边平行且另一组对边不平行的四边形叫做梯形。

  八、等腰梯形

  1.定义:两条腰相等的梯形叫做等腰梯形。

  2.性质:等腰梯形同一底上的两个内角相等,对角线相等。

  3.同一底上的两个内角相等的梯形是等腰梯形。

  九、三角形的中位线

  定义:连接三角形两边中点的线段。

  性质:平行于第三边,并且等于第三边的一半。

  十、梯形的中位线

  定义:连接梯形两腰中点的线段。

  性质:平行于两底,并且等于两底和的一半。

2.九年级上册数学知识点归纳总结北师大版 篇二


  1.代数式与有理式

  用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

  整式和分式统称为有理式。

  2.整式和分式

  含有加、减、乘、除、乘方运算的代数式叫做有理式。

  没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

  有除法运算并且除式中含有字母的有理式叫做分式。

  3.单项式与多项式

  没有加减运算的整式叫做单项式(数字与字母的积—包括单独的一个数或字母)。

  几个单项式的和,叫做多项式。

  说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如=x,=│x│等。

  4.系数与指数

  区别与联系:①从位置上看;②从表示的意义上看;

  5.同类项及其合并

  条件:①字母相同;②相同字母的指数相同

  合并依据:乘法分配律

  6.根式

  表示方根的代数式叫做根式。

  含有关于字母开方运算的代数式叫做无理式。

  注意:①从外形上判断;②区别:是根式,但不是无理式(是无理数)。


3.九年级上册数学知识点归纳总结北师大版 篇三


  1.直线与圆有公共点时,叫做直线与圆相切。

  2.三角形的外接圆的圆心叫做三角形的外心。

  3.弦切角等于所夹的弧所对的圆心角。

  4.三角形的内切圆的圆心叫做三角形的内心。

  5.垂直于半径的直线必为圆的切线。

  6.过半径的外端点并且垂直于半径的直线是圆的切线。

  7.垂直于半径的直线是圆的切线。

  8.圆的切线垂直于过切点的半径。

4.九年级上册数学知识点归纳总结北师大版 篇四


  单项式与多项式

  仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。

  单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。

  当一个单项式的系数是1或—1时,“1”通常省略不写。

  一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。

  1、多项式

  有有限个单项式的代数和组成的式子,叫做多项式。

  多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。

  单项式可以看作是多项式的特例

  把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。

  在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。

  2、多项式的值

  任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。

  3、多项式的恒等

  对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。

  性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。

  性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。

  4、一元多项式的根

  一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。

  多项式的加、减法,乘法

  1、多项式的加、减法

  2、多项式的乘法

  单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。

  3、多项式的乘法

  多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。

  常用乘法公式

  公式I平方差公式

  a+ba—b=a^2—b^2

  两个数的和与这两个数的差的积等于这两个数的平方差。


5.九年级上册数学知识点归纳总结北师大版 篇五


  一、圆周角定理

  在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

  ①定理有三方面的意义:

  a.圆心角和圆周角在同一个圆或等圆中;(相关知识点如何证明四点共圆)

  b.它们对着同一条弧或者对的两条弧是等弧

  c.具备a、b两个条件的圆周角都是相等的,且等于圆心角的一半。

  ②因为圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半。

  二、圆周角定理的推论

  推论1:同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等。

  推论2:半圆(或直径)所对的圆周角等于90°;90°的圆周角所对的弦是直径。

  推论3:如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形。

  三、推论解释说明

  圆周角定理在九年级数学知识点中属于几何部分的重要内容。

  ①推论1是圆中证明角相等最常用的方法,若将推论1中的“同弧或等弧”改为“同弦或等弦”结论就不成立.因为一条弦所对的圆周角有两个。

  ②推论2中“相等的圆周角所对的弧也相等”的前提条件是“在同圆或等圆中”。

  ③圆周角定理的推论2的应用非常广泛,要把直径与90°圆周角联系起来,一般来说,当条件中有直径时,通常会作出直径所对的圆周角,从而得到直角三角形,为进一步解题创造条件。

  ④推论3实质是直角三角形的斜边上的中线等于斜边的一半的逆定理。

标签:  初中三年级  九年级上册数学知识点归纳总结北师大版  初三数学知识点

请支持知识付费阅读!感谢!

推荐度:

留言评论

留言与评论(共有 0 条评论)
   
验证码: